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SYIMBOLS AND NOTATIONS

signal to be detected
Fourier transform of s

(2M+1)x1 poise vector (white, Gaussian and uncorrelated
between any two elements)

the ith element of N

received signal at the ith semsor

beam output

variance of the random quantity x
distance between two sensors

incidence angle of the incoming signal wave to the 1linear
array of sensors

sin®, sin®,

signal propagation speed in the mediam
generalized inverse of the matrix A

minimum norm least squares solution of the set of linear
equations AY=Z

oxe matrix of the low—pass filter operator with cutoff
frequency ch:

sin(2n(i-j) £ T]
ij = m(i-j)

; 1,§=0,21,+2, ...

note that its spectrum is omne in the frequency range
(‘ch.ch). and zero elsewhere
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(2M+1)x» matrix of the truncation operator:

1; i=j, -M{i, j¢M

= 0; otherwise

Pij
sampling interval

weighting function
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CHAPTER 1

"-‘\ ‘ INTRODUCTION

\.

\é} ‘

—~In the area of signal processing, considerable attention has been
devoted to digital array processing in recent years. This attemtion is
doe to the increasingly wide use of array processiag for both civilian
and military pufposei. Digital beamforming, for example, is popular
because of its advantages in speed, accuracy, etc., over coanventional
analog beamforming. ¥:51d‘papers concerning digital beamforming have

/ . T~
recently been published [1]-[8]. It has been shown- [1], [8] that the
quality of performance of a beamformer, such as beam pattern, signal-to-
noise ratio, etc., depends to s great extent on the pumber of sensors
used, i.e., the more sensors used, the better the beam pattern becomes.
In a practical situation, bhowever, the anumber of sensors may be
restricted by economical <reasons or physical restrictions. In this

situation one may weight the output of each sensor before beamforming.

This helps to some extent, although the improvement is rather limited.

A totally different issue, signal extrapolation, has also been
drawing a great amount of interest recently, largely in the area of
spectral estimation. It has been shown that s known portion of a signal
can be‘ extrapolated onts%égﬂ,g{\}he observation interval if the sigznal
possesses certain property/[9], [12]\ Many algorithms, both iterative

and mpon-iterative, have been proposed for both continuous and discrete

cases.- References [9]-[13] serve as a good review on this issue.
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~ The purpose of this thesis is to use spatial signal extrapolationm im

digital beamforming to improve the beam pattern without adding more
| P S

~ physical sensors. Effectively, the sensors are added synthetically

through signal processing. This has the potential to improve performance
considerably. Other currently used techniqunes such as interpolation,

weighting, etc. can be combined with extrapolation to achieve overall

better performance.

7




CHAPTER 2

BACKGROUND

The following discussion assumes a uniform linear array "as shown in
Fig. 2.1. For convenience, we assume that there is az odd number of
sensors in the array. These sensors are indexed from -} to M so that the
total number is 2M+1. Also we assume that the signsl is band-limited and
the noise 1s‘whit‘e and Gaussian. Furthermore, we asssme that the- beam
steering specifications are met either by sampling the sensor ountpauts at
a sufficiently high frequency, or by using digital interpolation
beamforming techniques, as described in [2]. These assumptions will be

used throughout this thesis.

2.1 Beamforming

The task of detecting a signal and determining its direction can be
accomplished by digital beamforming, i.e., by delaying and sumipg the
corresponding sensor signsls. Suppose tbhe signal is a plane wave which
impinges upon the linear array of 2M+1 sensors at am angle &, with speed

€, (see Fig., 2.1). The received signal at the ith gemsor is denoted by

iDa

ri(t) = s(t + c°°) (2.1)

where 8,=5inf,. The beamformer samples the output of each sensor, delays

the samples by delay intervals determined by the steering angle, and then

sums these delayed samples of the sensor signals along the array
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dimension. This process is described by
M
1 iDa
L) » mA =~ ——
M a
1 a o
" —— md =~ 1D (= = —
povrey g__u s (£ co)]
L M a ao
- A / s(ejm] [ . e-jwin(? - ?;)] eJumd g,
A " JumA a_ % JemA '
" 5 {“ s(e™™) w[u(Z - o] e (2.2)

where S(ed“®8) i3 the discrete Fourier transform of s(mA), and

'[u(%-gf)]. called the beam patterm, is given by

M
W(v) = 1 Z . 319D
M+1 {==M
sin —-———(2“;+1) vD
- . (2.3)

(M+1) sin -"-;i

The magnitnde of a beam pattern is usually displayed on a dB scale
as shown in Fig. 2.2 where the horizontal axis is yvD. Notize that tke
beam pattern is periodic with a period of 27, It is easy to see from

Eqn. (2.3) that the largest value occurs at vD=0, which coincides with

%-%3 when the beam is steered at the angle of the incident signal wave.
L]
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The beam output af this angle is g(a,,mA)=s(mA). Thus the signal and its
incidence angle can both be detected. Notice that Da/c must be an
integer multiple of A because of ‘the sampling, although Da,/co is
continuons., This implies that a digital beamformer canmot  steer
continucusly in the detecting space. However, as we mentioned earlier,
it is assumed that the sampling rate is high enough so that all required
steering angles are covered.

Also, it is seen that the first zero of W(V) occurs when VD:i(E%ETT'

That is, the main lobe width is inversely proportional to the total
number of sensors in the linear array. By increasing the number of
sensors, the width of the main lobe of the beam pattern is narrowed, thus

improving an important measurement of the beam pattern.

A weighting sequence w(i) can be applied to each sensor output

before summation. In this case, Eqn. (2.2) takes the form

M
1 .
g(a,m8) = —— | w(1) ry(ma - 2D2j, (2.4)
i=—§( [
and the beam pattern becomes
M
N(V) = —— ] w(1) e 31VD
M+ 1=y
H hi
= [w(0) + 2 | w(i) cos ivD] (2.5)

2M+1 i=1
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| parameters of the output beam, in moch the same way an FIR filtcf is

‘dosigned using a window function to

et e e i e maelw. ottt e ate e A M Y. Te e e lel
------ IR A ISP SRS Jaak e A
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if w(i) is symmetric. The weights w(i)’s sre chosen to improve various

shape its spectrum. In general,

windowing is a well developed subject in the litserature om both filter

and antenna design [14], [15]. :

.

In the case when there is a noisy background, the iignal~to-noise

ratio (SNR) at the beam outpunt serves as an essential measurement of

performance. Asseming additive white Gaussian 1noise which is

uncorrelated from one sensor to another, the received signal at the ith

sensor is
1Da_
Ty(t) = s(t + - ) + ng(t), (2.6) - -
0
and
M
1 1Da
R A B cm— i A = —
g(a,mA) — 15-»« w(1) ry(m )
- 1 \Z( w(1) s[mA - 1D (f-—f-"-)’s
M+1 {==M Co™”
'
1 1Da
+ i DA = —, .
oo, 1§—M w(1) nyf — (2.7)
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At the angle %—gf. the beamformer output becomes
saty = 28 Ty L Ty ag(m - ) (2.8)
+1 M 24+l fuuy e Co :
The signal-to-noise ratio of g(mA) is defined as
M M iDa
A) 1 0
SNR = 10 log {var[-f-(#'-’-— w(i)| / var w(1l) n4(mA- ——
10 Mt 12—}{ ] [Z‘H'l iz—M ( ) i( <o )]}
2
: M g M
2 2
=10 1g, {of = ] wn]?/—2— ] W}
24+ gauy (2M+1)°  1=-M )
°: " 2, % 2
=10 log . > +10lg, {[I wD]"/] w(}. (2.9)
cn 1=-M i=-M

The first term in the last expression is the input SNR. The second term
is called "array gain”. It equals 10log,,(2M+1) when all weights equal
one. In other words, beamforming inc;eases SNR by the amount of array
gain. Also, note that the array gain increases as the number of sensors

increases.

2.2 Extrapolation

The motivation to link digital beamforming and sigmal extrapolation
is quite obvious from the above discussion. Performance of the beam

pattern and beam SNR are dependent upon the number of the sensors used.




- e e e A e o — . s W ———— e e (.. % &% L A mT e et eTele Te a4

9
#! ' Often, including a large number of sensors in an array is mot practical
because of the physical, geometrical, or economical reasons. An

excellent approach to solving this problem is well known in the area of

Fg SAR (synthetic aperture radar), where s moving sensor (a microwave -radar

n

carried on an sirplane or s satellite) is used to form a long synthetic

array. This approach is not very practical in sonar and underwater sound

~y
1

signal processinj for many reasons, such as low propagation speed, low 3

vehicle speed, and instabilities in traveling along a straight path [171.
' Q‘ Thus, it is mnatural to look for alternate techniques which extend the

array beyond its actual physical length.

| R
A B

In 1975, Papoulis [9] proposed an  iterative procedure for

vy
-l

extrapolating an (continunous) analytic signal based on the observation of
3 only a time limited portion of it. Later, a series of papers concerning
this problem was published ([10]-{13], etc.). Aa important paper

discussing discrete extrapolation is due to Jain et al. [12]. For the

e
\

purpose of this study, only Jain’s one step approach will be discussed

3 here.

L
§ Let the infinite-dimensional vector I=[yk; —a{k{=} denote a
R

sequence, and the (2M+1)x1l wvector Z denote an observation of Y over a

limited interval, i.e., Zj=y; for -M(j¢M. Using the truncation operator

] P, we have f

Z=PY. (2.10)

Y

If Yy's are the samples of a continmons function y(t) which is band-

 Aha A
.-
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limited to the region (—fc,fc). then Y is band-limited over (-£.T,.f.T),

where T is the interval between two adjacent samples. Hence, using the

low—pass operator L, Y must satisfy LY=Y, so thnt we have

Z=PLY=AY

(2.11)

where A=PL. Equation (2.11) is a set of linear equations witk infinitely

many solutions. However, its minimum norm least squares (MNLS) solution

is unique and is given by [12]:
Yr=A*z=1PTi %z,

where T=PLPT. This is Jain's one—step extrspolation

Explicitly, we can write
Yt = BH(B1)7'Z

where H is a2 =x(2M+1) matrix with each element defined by

. sin[27(i-j) £_T] i=0,4+1,+2, ...
ij = 7(i-j) P -MG M

(2.12)

algorithm.

(2.13)

(2.14)

(Note that the subscripts here are different from the conventional row-

column index of & matrix), and Hl is a square matrix of dimeasion (2M+1)

with entries given by




&

o
.

L2

. —
BACN

11
L sin{2x(i-j) £ T]
In case of noisy observation
Z=PY+N, (2.16)
we have a "mean-square extrapolation”:
2 -3
Y=H(H1+yI)""Z (2.17)

where 1'0;/6; and I is the identity matrix (also see [12]).

The extrapolsted sequence Yt (also f) does not equal Y, in genmeral.
However, it converges to Y (hence to y(t)) when the interval T approaches
zero (One more condition is needed for this conclusion, i.e., y(t) has

finite energy, see [13]).
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CHAPTER 3

EXTRAPOLATION BEAMFORMING

3.1 Real-Time Implementation

Igin's one~step extrapolation procedure can be used for spatial
extrapolation, as well as time extrapolation. Speeifically. suppose the
x-axis descriées spatial positioh along the linear array, and ;‘ plane
wave s(t+x%§) impinges wupon this array with an incidence ;ngle o9,
and speed ¢, a5 previously shown in Fig. 2.1. The received signal at the
ith sensor is s(t+iD;f) as in Eqn. (2.1). Let the signal s(t) be band-
limited over (’fc.fc). Hence if S(£) is the continuous Fourier transform

of s(t), then S(f)=0 for lfl)fc. For s fixed t, the traveling wave
s(t+x§§) is a function of x. VWithout loss of generality, we may as well

assume that t=0. Tken we define

u(x)=s(§§x). (3.1)
Its Fourier transform is given by

Tk =3 8300 (3.2)

. Co c
Since S(E:k)=° for lifk’>fc, we find that u{x) is spatially band~limited
a a
over (-32f ,—3f ). Furthermore, by the well known sampling theorem, in
o C co c

order to reconmstruct u(x) from its samples u(iD), the interval ‘D must

satisfy




—-—

13

A
S e, |
D { 2ot "7a, | (3.3)

where lc is the minimum wave length of the signal. Since ao=sinBe is no

groater than unity, we get fixed bouads:

!c
k,-;: : (3.4)
and
Yo (3.5)
D¢-E, .
2 .

¥hen u(x) is (spatially) sampled at a rate 1/D, the sequence wun(iD) is

band-limited over (—kcp,kcn), or (-!lf ,llf ). Thus, Jain’s approach can
c,cc,c !

be applied spatially to each group of samples obtained at 2M+1l seasors at

each temporal sampling time. The T's in Eqn. (2.14) and Eqn. (2.15) are

replaced by é%'s with D satisfying the same requirement as conventional
beamformer, i.e., D(—f. A real-time implementation scheme is shown in
Fig. 3.1. The truncation point M' of the extrapolation along x—~axis will
be discussed in section 3.3. From the figure we see that in extending the
array length synthetically, we add some multipliers, adders, and
registers. This is worthwhile even in comparison with the case wkere
physical seansors are added. This is because with the compatible results
(discussed 1later), the synthetic apprcach avoids possible long noise~-
sensitive connectién ¢cables between the additional sensors and the

central processing unit, and saves sensors zad A/D converters as well.

S e S ETR Rk
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Fig. 3.1 Real-time implementation scheme of an extrapolation
beamformer: (1) Overall scheme (2) The ith extra-
polator (EX i) im (1) for M+igigM’
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Other techniques, suck as temporal interpolation, sampling
techniques for band-limited signals, and frequeacy domain besmforming
[2]-{7], can be unsed simultanecusly with the spatisl extrapolation.

However, they will not be discussed in this thesis.

3.2 Extrapolation Errox

As mentioned earlier, the extrapolated sequences do not in gesmeral
equal the samples of the original continucus signal which we seek to
reconstruct, i.e.,, there is some “extrapolatior error”., We also
mentioned that these extrapolated sequences converge to those contimuous
values uwniformly if the sampling interval T (é% in our c¢ase) approaches
zero [13]. Thus, for a relatively small 5% we may expect that the
extrapolation error is within some bound so that the extrapolation
beamforming is meaningful. The gquantitative measvrement of the error is
needed in evaluating the perform;nce of the extrapolation beamformer.
Ucfortunately, it is very difficult to evalpate these err;rs analytically

for the reason discussed below.

-

We notice that Jain's formula was obtained earlier through numerical
approximation of some integral equations by Cadzow [10]. Specifically,

the one-step extrapolation for continunous case is

[ hlfe-t) x(7) dt = z(t); teA (3.5)
T€EAN
y(t) = [ h(t-1) x(3) dr; téA (3.7)

T€EA
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where h(t) and h1(t) are the impulse response of a2 low-pass filter with
cutoff frequency lfc, x(t) is an intermediate variable, and A is the
observation interval. pna first solves Eqn. (3.6) for x(t) based on the
observation z(t), then substitutes the x(t) in Eqa. (3.7) to obtzin the

result y(t). A numerical approximation to this set of equations is

M
T hl(4T-3T) x(JT) = z(4T); Ji]< ™ (3.8)
=M
o ,
y(IT) = [ h(1T-3T) x(JT) T; |1 |> M. (3.9)
R j'—M

Note that this set of equations is exactly the same as Eqn. (2.13) where
it was written in matrix form. Since Egn. (3.6) and Equn. (3.7)
reconstruct the continmous signal exactly, the extrapolation error
mentioned above is just the numerical approximation error of Egqm. (3.6)
and Eqn. (3.7). We now show that it is impractical to evaluate this
error. First of all, Eqn. (3.6) may not have a solution at all if y(t)
(hence z(t)) does not satisfy certain comditioms [10], [11]. Ia this
case, althongh an MNLS solution to Eqn. (3.8) exists, it is meaningless
to mention the error. These conditions will not be quoted here, since
even if a solntion to Eqn. (3.6) does exist, we still cannot estimate the
error. This is because the numerical approximation to Ega. (5.6)
(solution of Egn. (7.8)) can be quite different from the samples of the
continuons solution of Eqn. (3.6) due to the ill-posed natunre of the

Fredholm equation of the first kind. Equation (3.6) can be rewritten as
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¥ |
J hl(4T-1) x(t) dr = T )  h1(4T-iT) x(iT) + Q(hl,x,T)
TeA J=-M

- 2(4T); |1]<H (3.10)

where Q(hl,x,T) denotes the non—zero remainder. Equation (3.8}, Lowever,
is the above equation with Q(hl1l,x,T)=0, Thus, Eqn. (3.8) actually solves

another integral equation

M

[ hl(iT-1) R(1) dt = T Z h1(1T-4T) £(3T) + Q(h1,%,T)
TeA j-—“
= z(1T) + Q(h1,R,T); 1)< M (3.11)

with Q(h1,2,T)#0. By the argument in [16], we see that the small
perturbation Q(11,%,T) on the right hand side of Eqa. (3.11) causes the
solution X(t) to move arbitrarily far from desired x{t). Heace, the
error i(jT)-;(jT) cannot be predicted, let alone the error of y(jT) in

Egn. (3.9).

A practical approach to this problem is to. condnct sorze nomerical
experiments with example signal sequences, and thea to model the error
obtained from thé experiments, This has in fact beea dome, and the main
results are presented below. The method used to invert the matrix

(H1+yI) in Jsin'’s formula is the well-known Gauss elimination method

which gives more accurate and more reliable results than other metheds
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such as Levinson's algorithm. The computation time is not importsnt
because the coefficients of H(Bl+71)“* need to be calculated only once
before the installation of the equipment. A sum of two shifted sinc
functions (called SHSINC) and a sine function (SINE) are used as signals.
Although the latter has n;t been provea to converge to continuous
solutions, Jain's approach still gives s good results as shown below.
The observation is made at 17 points, i.e., M=§., The quantity fcé% is
the digital cutoff frequency F, which is less than 0.5 (since D(ff:).
The digital signal frequency fé%. denoted by F1 (for SHSINC, it is the

highest freguency of the sinc function),is less than or equal to F.

First, we investigate the noise-free case, i.e., N=0. In a
practical sitoation, the signal sequences may have sever;l degrees of
freedom. Their frequencies as well as their phases may vary. ¥e now
look at the extrapolation error for diffe:ent phase shifts., It is
observed for SINE shifting from O to 2x. For SHSINC, the separation
points between two main peaks is 60, the shift is from the —-150th poiant
to the 50th poiat. The filter cutoff frequency is 0.05 if it is not

specified. Dashed 1lines axe signals, and solid lines are error if not

otherwise indicated.

Figure 3.2 and Fig. 3.3 show the extrapolation error vs. x/D ’for
SHSINC and SINE respectively when their shifts are all zero. We can see
a flat region in the central part of the extrapolation error, indicating
that good extrapolation almost doubles the observation lemgth. Notice
that ¥ is not zero as it should be in ideal noise—free case. This is

because experimentally, very poor extrapolatiom results if y=0, due to
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Lc the ill-conditionness of the matrix Hl and the round off error in
3

computation. This problem is solved by adding a very small number to the
»f diagonal of H1l to "stabilize” it [12]), which is exactly the same as

’E! : letting v equal this small number (in our case 10~** to 10"" is enmough)

v

in Eqn. (2.17) for N=0,

Next we fix i (i=x/D) at a point, let the " signal shift in

aforementioned ranges, and observe the extrapolzation error vs. shift for
this particular point of i. The plots for SHSINC are shown in Fig. 3.4

through Fig. 3.7 for different i and different F1. It is interesting to

—Y'*rr."'I.TTv,' e,
Y Y o

see that the error is almost a shifted version of the signal with the
magnitude mmltiplied by a negative number. It is also observed that this
model fits better for low signal .frequency case (F1=0.02). Figure 3.8
through Fig. 3.13 show same plots for SINE. We observe that in these
‘cases the error is exactly sinusoidal with one complete cycle. As F1
jncreases to F, its magnitude becomes larger, and its shift with respect
to the signal becomes irregular (see Fig. 3.12 and Fig. 3.13 , the shifts

are not 180° as it is for smaller F1 case).

Fe The magnitade of the peak error for these shift ranges at each point
of i is shown in Fig. 3.14 through Fig. 3.18 for different cases (since
this magnitude is symmetric, only ome half is shown). It is clearly seen

] that

vy

(1) For the signal of SINE, the error becomes very large when F1 equals

Pl F while it remains small even for F1=0.96F. This phenomenon is not

o Ao bk sut e L8 ate a0

observed for SHSINC. This is because the spectrum of SINE is an
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impulse, and if it equals the cutoff fLrequency of the low-pass
filter, it is almost cut off by the filter. While the spectrum of
SHSINC extends from zero to F1, thus no information is lost even if

Fl equals F.

(2) For a fixed F1, smaller filter frequency F (dut still 1larger than
F1) achieves better extrapolation in the sense that the error is
smaller (e.g., compare the curve of F1=0.04 in Fig. 3.16 with the

curve of same F1 in Fig. 3.17).

(3) The extrapolation error tends to unity when i increases as skown in
Fig. 3.18. This is because. the extrapolated sequence tends to zero

as i increases.

Since SINE signal is a basis for any other signals via Fourier
transform, and also exhibits a better property in extrapolatiom in the
sense that the error vs., shift is an exact sime function, we will
concentrate on the extrapolation and beamforming problems for the sine

signal only.

Soppose the sine signal has a random phase ® vwhick is uwniformly
distributed omn [0,2n), i.e., y(x)=sin(Qx+P), then by the above

observation we can model the error at a fixed i as
E(x,0)=E(iD,0)=~A(i)sin{GiD+9) (3.12)
so that the error and the signal arxe 180° out of phase for each zx. Tae

magnitude function A(i) can be obtained by corve-fitting the plots of

magnitude vs. i. It is easy to calculate the densicty functiom of E at

- m
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iach i

.
. tg ={ ¥ A ()-E

0 ;s otherwise,

JE] < A(x)

(3.13)

From observ-t{an (1) above and from the earlier observation about
errory vs. shift we see that the filter cutoff frequency fc (hence F)
should be larger than maximum possible signs! fteqneﬁcy f (F1). On the
other hand, observation (2) implies that it is better that F is small.
Thus, in a practical situation, we need to estimate the maximum signal
frequency f and select f  gnd D (F=fcé%) carefully to trade off between

these two aspects.

Now let us consider the noisy case. For uncorrelated white Gaussian

noise N added to the observation, we have

Z=Z,+N : (3.14)

where Z,=pY, and

H(H14+1)"'Z

>
[}

H(E1+1I)—1(ZI+N)

B(H1+yI) 7 Z,+H(H1+y1) N. (3.15)

A
Thus Y can be expressed as a sum of two terms
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=g 08 (3.16)
where
L FETTIE S A (3.17)
9,-8(51+7I)-‘No | (3.18)

A
Notice that Y, Qd and 9: ars all infinite-dimensional vectors while Zi

and N are (2M+1)x1 vectors. We see that each element of 9: is & linear
combination of that of N, hence ?r is also white asd Gaussian. The
analysis for Qd is exactly the same as before except that y is much
larger. An arbitrary value for y is chosen so that 1010310% is 13 4B
(This wvalue will 3ve nused tﬁroughont the thesis if it is not otherwise

specified).

The plots for error vs. phase shift are shown im Fig. 3.19 through
Fig. 3.28. We see that the error 9oincides with the signal (with 180°
'
out of phase) better than N=0 case for F1 less than 0.8F, Beyond F1=F,
the error does mot fit into the model well. The error magnituds vs. i is
plotted in Fig. 3.29 and Fig. 3.30 for 04i{50 (A(i) is symmetric). Ve

see also that the error gets larger for F1 beyo=d 0.3F. Tyns. in

designing an extrapolation beamformer, we should choose fc such that

J'Sfc>fmax- (3.19)




32
2.
SINE . 1.5
(2M-1)=17 1
1-14
F=-.02S -5
F1-.04 | 2.
SNR(DB) =13, -.5
-
-1.5
SHIF
-2.
) 2 4 &

1. ) 3. ) S.

Fig. 3.19 Extrapolation error vs. shift for SINE, y=0.05, F1=0.04, x=14D

-

2.
SINE 1.5
(2M-1)1=17
1.
1225 ‘
c. gc .S
Fi-.24 2
/
SENR{DS1=13 -.5 //
s
-1.
-1.5 ¢
S=IT
-2.
2 2. 4 &

Fig. 3.20 Extrapolation error vs. shift for SINE, vy=0.05, F1=0.04, x=25D




33
2. 1
SINE 1.5
(2M-1)+=17
1. —
118 AN
e r /‘/ \.\
Fe.0% ’
4 \
.l 0‘
Fi1=.023 ] , .
N /
SNR(DB)=1%, -5 [\ y
N /
_1' \\_/
-1.8
SH1F
-2
Q. 2 ) 4, e
1 3. g,

2.
SINE ' s
(2M-11=17 .
1. . -
TaT2Z P ~ S
- - - \
S 1 7 N
£ - '25 / \ \\
7/ \,
- - \
. o= ZS z' \ 7/
/ \ 4
SNR(CS) =13 -.5 //’ N ’
~ //
- ! N - -
-1.8
-4.'7( = & 2
E4 N = -
! z <

Fig. 3.22 Extrapolation error vs.

shift for SINE, y=0.05, F1=0.03, x=33D




SINE
(2M-1)=17
1-15

F=.25
Fi1-.02
SNR(DB) =13,

34

SHIF

1.

2.

3.

6.
5.

Fig. 3.23 Extrapolation error vs. shift for SINE, y=0.05, F1=0.02. x=15D

in

Z

A3

W)

w N
»

N

-~
N
N
[ AN
\
\
N\
: /
/
AN
~
Smic
Z. . 2. =
! z. S.

Fig. 3.24 Extrapolation error vs. shift for SINE, y=0.05, F1=0.02, x=25D




L3

L]

35
2. f
SINE 1.5
(2M-~1)1=17
1-692
Fe.05
Fle=.02 ’
/
SNR(DB)Y=13. //
7
__I
_105
1c
-2 - SH
Q. 2. e 6.
1 3. 15}
Fig. 3.25 Extrapolation error vs. shift for SINE, y=0.05, F1=0.02, x=50D
2.
S INE 1.5
(2M-1)=17
1.
122
.S
F=.28
F1s.245 2.
/
ENR(ZE2)a13 -, g 7
/
e
-1, -
-1.€
S=1%
-2.
2 2. a z

(N

[}

Fig. 3.26 Extrapolation error vs. shift for SINE, y=0.05, F1=0.045, x=22D




36

SINE ’1.5
(2M-1)=17
1-21

F=.25
F1=.048
SNR(DB) =13,

Fig. 3.27 Extrapolation error vs. shift for SINE, y=0.05, F1=0.048, x=21D

2.
SINE ' s
N (2M=~-11=17
1 -
I=2 /’ N yed
. ~
) £-.95 S 7 \ ///
= T1s..0%5 : e. ¢ \ ,
. ' » \
: SNR(D381=13, -.5 \\\\\~¢// A /
. Ve ~ s
Y 1 R
-1.5
IR
-2. e ~
¢ 2. 2 4 =)

S

3.

11}

Fig. 3.28 Extrapolation error vs. shift for SINE, ¥=0.05, F1=0.05, x=20D




xr .

SINE
F=.325

(2M-1) =17

SENRI(D2)=135,

1. F1=2.3

2. F1=3 . 2F

N
M

'
'

Q
D
n

37

ERR .MSG.

1.2

1.

X/0

12 22 33 43 S2
5 1S 25 35 45

Fig. 3.29 Magnitude of extrapolation error vs. i for SINE, y=0.05, F=0.05

SINE

Talt
(2M-11-17
SNR(DS1.13
1. F1.2.2
2. F1=g. a7
T, Ti-z.e7
&, F1ez. =z
S, Far

ERR.

[§1]

Ny

W

M=C.
i 2
| >/"\
4 o~ T =
- N e e =~
s TAS T e
4
: NJ
: HEN g ST
e
I .
]
]
i
|
1= .. X/Z
2 12 22 zZz oz =z
= ) 2= == ez

Fig. 3.30 Magnituds of extrapolation error vs. i for SINE, y=0.05, F=0.1




TR

e
L‘ R

R

38

Thus in these two plots, discarding the curves for F1)0.8F, the remaining
three curves (F1=0, F1=0.4F and F1=0.8F) are averaged and are plotted
with the dashed lines. They will be used in Section 3.3 and in Chapter 4

as the magnitude function A(i) in the error model (Eqn. (3.12))f

Notice that in Fig. 3.1, the input to the beamformer for lilgn  is
fed directly from the sensors without extrapolation. This is because we
want to use as much real information as possible. Thus the elements of %
for |lilgM are replaced by those of Z and A(i) is set to zero for lil(u,

This will not affect the extrapolation for |il>M.

3.3 Evaloation Of Performance:

At this stage we are ready to evaluate the performance of the

digital extrapolation beamformer using the error model obtained in last

section. Specifically, for a sinusoidal incoming wave

xa
o

s(t,x) = sin[w, (t +—=2) + ¢] (3.20)

€o

with a random phase uniformly distributed over [0,2r], the ith seasor

receives

1Da
ry(t,1D) = sinfwy (¢t + - =+ o]+ ng(n);
0

1)< (3.21)
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whé;e ni(t) is the aforementioned noise. After temporal sampling,

ri's form the observation vector Z, or the elements of ? (denoted 91) for

lilgy, i.e.,

iDa

0

91(a8,1D) = stnlug(ms +—2) + ¢] + ny(md);

Co

[1]< M. (3.22)
Then they are extrapoiated to lif=y’, i.e.,
. 1Da_ 1Da
$1(m4,10) = stafw,(ma + ) + o] ~ ACD) sinfu, (mA + J + 4]
Co Co
+ ﬁi(mA);
M+1<it]<y (3.23)

where i'ii(mA) is the extrapolated noise, i.e., the ith element of the

A
vector Yr for M+1glilg¢u’.

All these 2M'+1 elements of § are fed to the beamformer which gives

an output as follows:

M’ a
1
g(a,nl) = : sinf{w,/ma-1p (& - —EJ] + !
24'+1 ==y c Co
Ay a
1 e . ’ r3 0'1" ]
- Z A(i) sintmo[mA-iD (— =
2M'+1 1=2(M+1) ©  cq
M'
1 T ~ 1Da .
+ ) A~ i .2
vl 1(mt- == (3.24)

thcse‘
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where

ny(ma); li ,< M |
~ i} 3.25
1(m4) fy(ma); ML < f1 ] < Mt -2

and

y M -
- I + 1 . (3.26)

1=2(M+1) 1=M+1- i=-(M+1)

¥e now evaluate two major measurements: beam pattern and signal-to-
noise ratio.
3.3.1 Beam Pattern
Without considering the noise, Eqn. (3.24) becomes
1 ¥ a %o
gla,md) = ! sinfu[ma-tp (B - 2] + ¢}
ZM'+1 i"M' [~ cO
1 b B a
- — ) A(1) staf{wg[ma-10 (£ - 2] + 5}
2+l jar(vl) S
T M
A j T - (2. 0 + 554
ah g g(edemsy 1§ duid(E- 2+ 2
2 ' 1 o °
" M+l i=-M
V! a
1 | -iniDi2 Q) ==
- !Y: A(i) e j»ile t-a-/ + J¢ 5 " errnAdU
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where S(eJ“®d) is the discrete Fourier transform eof siza,mA,. With ¥
denoting 0(%-3—:). the magnitude of the beam patter is \

' e ‘ w
RISy i S LR YOt L | PE LA
M'+1 {u-M* 1=t (M+1)
1 M! M!
- 1+2 ] cosibv-2 | A() cos iDv], . (3.28)
27+ 1=1 {=M+1 _

where the symmetry property of A(i) is used. We also get a closed form

for the first summation, i.e.,

__=~3(2M"+1)Dv ' -
[Wevy [ = —— | 1zt WY ay THY
' +1 1-e IOV {=%(%+1)
. stn LZL21) py M
-— -2 | A eos fDV]. (3.29)
24'+1 a1n DV f=M+1
2

A particular case for Eqn. (3.29) is when M’'=M (no extrapolation), and

Eqn. (3.29) degenerates to Eqn. (2.3). When M’ON, the beam patterxn is

Nt
modified by a factor -~ 2 f_ A{l) cos iU Desides the expected
f=M+1

improvement (M being increased to M’'). This is of comrse caused by the

extrapolation error, and results in some degradation of the beam pattern.
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Yhen s window (weighting) is added in beamforming, the beam output

(Eqa. (3 «24)) becomes

H'

- 1 a _ %
g(a,m8) = — 12-»:' w(1) stnfug(ma-10(F - %)) + 4]
1 ¥

a
) w(i) A(1) si pA-iD(2 - -2)) +
24"+l i=:(M+1) ) s n[m".( (c —Co)) ¢]

o'
-1 -~ iDay
+ mA = —— 30
24'+1 izul w(1) ni( c ) ) (3.30)

where the window w(i) is 2M'+1 point lomg, i.e., -M’{igM’, and is

symmetric. The corresponding beam pattern magnitude is

) M' v . w
W) = =] 1w & -] wi) A1) ¢ B ¥ 5
24"+l | fm-yM! {mt (M+1)
1 ' u’
- w(0) + 2 ] w(i) cos iDv -~ 2 | w(i) A(1) cos 1Dv |.
2M'+1 1=1 1=M+1
(3-31)

Also, it degenerates to Eqn. (2.5) when M'=M and degenerates to

Eqn. (3.28) when w(i)=1 for each i, a rectangular window.
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3.3.2 Sigpa]l-To-Nojse Ratio

Let us reconsider Eqn. (3.25). The ai'. are uncorrelated for each i
as assumed, Also, the ﬁi" are some linear combinstion of n ’'s. Let h“
denote the element of the (2M’'+1)x(2N+1) matrix R(HIHI)"‘ at the ith row

and the jth column where -N'{i{M’, ~NSj¢M. Thus ﬁi(d) can be expressed

M

fiy (ma) = Jz . heg ny(md); M+ < [1]<n, : (3.32)

Then 'i'i(nA) can be expressed in terms of n,(mA):

ng(md); J1]<x

fij(ma) ={ ¥ (3.33)
hygngmd);  MHL < 1)<y,
=y

Notice that the 'Ei(mA)'s are no longer uncorrelsted for N+1g¢lil¢M’.

At the searching angle when %-%:. Eqn. (3.24) becomes

V'
g(ay,md) = sin(uomA+d) - sin(uwoma+s) J A(L)
1=2(M+1)
1
. 1 .:} - iDa

(3.34)
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The variance of g(a,,maA) is .

2 =
var[g(a,,mA) ] =0,

! A@)]?
M'+1 1=t (M+1)

[1-

L} Fe T T mite

+ o+ hiy o]

(M'+1)% gm-M P gef(ue1) jmy T B
M M

2t o [2 ] I nyyol

(M'+1)% T 1=r(e+l) M

A :
+ hyy hys ©
k=t(M+1) 1=%(M+1) =M k171 %
k#1
2
™' ]
— [ aw]t r—2— [
DAL 1= (M4+]) (217+1)

2
- o‘s [1—

yt M 2yt e M
+ 2 ] I hyy+ ] ) I hygy hyyl
1=E(MF]) e k=f(M+1l) 1=(M+1) ju=-M

(3.35)
where o} js the variance of the signal, the same as g} on page 11.
The signal-to—noise ratio at the beam output is then
2 1 2 o2 .
SNR = 10 log,, {90 [1 ~— ) AD ]} - 10 log  (—F— T(2=1)
s 24'+1  far(MHl) oM +1)
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e M M £y M
+2 ] I hy+ ] ) I ey bygll
1=t (M+l) =M k=E(MFL) 1=f(M+1) =M
02 ™! 2
=10 log,, —— + 10 log,o {[(2'+1) - [ A%}
o 1m2 (M+1)
£y M e e M
- 10 log, [(2#+1) +2 ) I ohgg+ § ) I gy hyyl
1= (M+1) =M k=t (M+1) {=t(M+1) J=-M
02 M 2
=10 log,, —3— + 10 log,, {[(2'+1) -2 ] aw]%}
% 1=M+1
. 2y M £y £y M
- 10 log,, [(24+1) +2 ] I hgg+ ) I hiy byl
1= (M+1) =M k=t(MF]) 1=t(¥HL) J=-M
(3.36)

where the symmetry property of A(i) is again used. In the particular
case vwhen M'=M, all the summation terms no longer exist, and Egqa.

(3.36) degenerates to

2
SNR = 10 log,, + 10 log,, ((24+1)°] - 10 log,, (2+1)

= 10 log,, + 10 log,, (2M+1), (3.37)

which coincides with Eqn. (2.9) for a rectangnlar window. For M'O>M, we

R g o RN

e

.
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again see from Eqn. (3.36) that besides the expected improvement, the
array gain is also modified by some terms due to the extxapolnt;on error
of the signal and due to some covariances of the noise resulting from
extrapolation. These modifications also degrade the SNR as in the case
for beam patterns (Eqn. (3.29)). Thus, we cannot extrspolate to an
infinite extent along x—-axis. On the contrary, we wonld expect to get
some optimum M’ such that the qmality of the overall performance would no
longer increase beyond this point. It is not easy to obtain this optimum
M’ analytically froi Eqn. (3.29) and Eqa. (3.36) since.it involves the
indices of the summations. However, by observing plots of digital
computer simulations, it is easy to estimate the optimum M’ as shown in

Chapter 4.

Ia case a window is used in the beamformer, we should start with

Eqn. (3.30). For %,:g’ we Rave

Ce
sin(wgma+d) u sin(wqmA+s) '
g(ag,mh) » e ] w(i) - 2 3 w(i) A(1)
2M"+1 {==M" 2" +1 {=t(M+1)
1 M’ 1Da°
+ w(1) Ay(ma - ) . (3.38)
M+l {==M' o
Its variance is
cz )3' t:}' 12
var{g(ag,m8)] = — = [ I w1) -] w(1) A(1)]
(2M'+1) 1=y’ 1=z (M+1)

B e M v

e
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oz M 2 M’ M
2 [ vy +2 ] 1 w(1) w(3) hyy
(2M'+1) 1=-M {=t(M+1) =M .
*M* CEMt M
+3 ) I wk) w(1) My hyyl.
k=2 (MF1) 1=t(M+1) =¥
(3.39)
Then the signal-to-noise ratio at the beam ouvtput is
a: M! v 2
SWR = 10 log o {—— [ ] wt) -~ | w(1) A(1)]°}
(24'+1)°  {=-u' 1=t (M+1)
a: M 2 ™' M
- Wlog, {—— [] ww)+2 ] I w1 W) hyy
(M'+1)° {=-M 1=2(M+1) =M
™t M .
+ wk) w(1) My hygj}
k=2 (M+1) qmE(M+1l) j=-M )
a: M! v 2
=10 log , ——~+ 10 log, {[ [ w(1) - ] w(i) A1) ]}
% i=-M' i=t(M+1)
¥, £ M
-10lg, [ ¥ +2 | I w(1) w(1) hyy
1=-M 1= (MH1) J=-M
M M M
) ) L (k) w(i) by hyyl. (3.40)

R=f(M+l)  d=S(M+l)  ja-l

Note that this expression reduces to Eqn. (3.36) for a rectangular window

and reduces to Ega. (2.9) for M'=M as expected.
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CHAPTER 4
EXPERIMENTAL RESULTS

In this chapter the results of digital computer simulation will be
presented. Some terminology used in the figures aand in the discussion
for this chapter is listed below. The observation points (number of
sensors) are 17 throughout this discussion, i.e., M=8, as in Section 3.2,

Also, the filter cntoff frequency F will be 0.05 if it is not otherwise

4.1 Msin Results

specified.

Input SNR signal-to-noise ratio at eack seansor, dB

Beam SNR signal-to-noise ratio at beam oatput, dB

" xdB BY xdB beam width of the main lobe

xdB SMER side lobe — main lobe energy ratio when those above
xdB are taken as in main lobe and those below are
in side lobes, dB

SLML R side lobe — main lobe magnitude ratio, where the
largest side lobe is used, dB

Peak loss main lobe peak loss, dB

Figure 4.1 shows a plot of Egn. (3.29), beam output SNR vs. M’, the

extrapolation length, for two cases when the input SNR is 30 dB and 13
dB, respectively. At the beginning point of these curves where M'=M=8

(no extrapolation), the beam output SNR is 42.3 dB and 25.3 dB for each
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case. In other words, boanfo:iin. increases SNR by 12.3 dB. It is
interesting to see that the beam SNR displays some decaying oscillation
as N’ incresses and tends to some certain value. At N’'=29, the beam SNR
achieves s local naxinnn"hich is 41.2 4B for 30 4B input SNR and 24.3 4B
for 13 dB input SNR. These values are only one dB less than those at
M'=8. At the double length of the array, M’=17, the beam SNR gets the
minimum value 39.0 dB and 22.0 dB, respectively. Figure 4.2 shows the
same plot when Hamming windows zre applied for each M’'. Ia this case the
oscillation is smoothed out. The array gain at M’=8 becomes 10.8 dB,
The maximum value occurs at M’=15 where the values happen to be 42.3 dB
and 25.3 dB, the same as those at M’=8 in Fig. 4.1. And the values at
M'=29 equal their starting values 40.83 dB and 23.8 dB, respectively.
From these plots we see that the beam SNR is not improved by
extrapolation, in fact it decreases slightly. This is probably due to

the strong correlation of the n.'s and the ﬁi's.

Ve now observe the beam patterns., Figure 4.3 shows the beam pattern

"for M'=M=8, no extrapolation case for rectangular windows. The plots for

L

H'=17 and ﬂ'¥2§>when extrapolation is applied are shown in Fig. 4.4 and
Fig. 4.5. VWe observe that the extrapolation narrows the main lobe width.
extensively. Moreover, it decreases the side lobe - main lobe magnitude
ratio and Ehe side lobe - main lobe energy ratio. The peak loss is not
that important since the beam SNR decreases little for these M’'’s as
shown in Fig. 4.1. Of course M'=29 is preferred since the performance of
the beam pettern is slightly better than that in '=17 and the

degradation of SNR is only ome dB. As a contrast, the beam pattern for
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full observation, i.e., all the inputs to the besmformer are obtained
from sensors (M’=M), is shown in Fig. 4.6 for N=29, It is seen that the
beam width in this case is even marrower than that in Fig. 4.4 as we
expected, since none of these 359 inputs to the beamformer contains
extrapolation error. However, the side lobe - main lobe magnitude zatio
and the side lobe - main lobe energy ratio rg-ain the same. Thus, in
trading off among these measurements, the digital extrapolation
beamformer is compatible with a conventional digital beamformer which
uses double, even triple the number of sensors. It is elso observed that
the improvement in the performance does not increase zrapidly as M’
increases. In fact beyond about M'=40, the side lobe — main lobe ratio
starts to increase (mot shown here). Thus, in consideration of
complexity of implementation and the improvement of the performance,

M'=29 is approximately optimum in this case.

Whea Hamming viﬁdows are applied in the digital extrapolation
beamformer, results are obtained as shown in Fig. 4.7 through Fig. 4.10,
Figure 4.7 shows the cas? when no extrapolation is applied to the 17
sensors. Comparing it with Fig. 4.3, it is clear that the application of
Hamming windows decreases the side lobe - main lobe‘ratio on the expense
of widening the main lobe. The results of applying extrapolation are
still good as shown in Fig. 4.8 and Fig. 4.9. The main lobe is mnarrowed
while the side lobe — main lobe magnitude ratio is further reduced thaa
the cases without applying Hamming windows. Tae extrapolation 1length
M'=15 is preferred because of its smallest side lobe - main lobe

magnitude ratio (-27 dB) und largest beam SNR (see Fig. 4.2). For M'=29
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Fig. 4.7 Beam pattern for 17 sensors with a Hamming window, no extrapolation
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(Fig. 4.9), the side lobe ~- main lo§§ magnitude ratio is only ~23 4B,
thﬁs we would have used fho cns; shown in Fig.:4.5 whers amch naizowaf
main lobe ovctwhel;s the compatible side lobe — main lobe magnitude rzatio
with the former. Figure 4.10 serves again ss s contrast which is
obtained nsing fnll observation of 31 sensors. Vo see that the side lobe
reduction for the extrapolation bealforQQr is not as ;ood.:s that for the

conventionsl beamformer in applying Hamming windows.

4.2 Effects Of Paraeter Changes

As we mentiomed earlier, the parameters F and y can bes changed to
alter the performance. To gain more insight into this, we now observe
the case when F=0.1. Figure 4.11 and Fig. 4.12 show the beam SNR for
rectangular windows ‘and Hamming windows as before. Iiey show same
character as that in Fig. 4.1 and Fig. 4.2 except that the oscillation
frequency is increased im Fig. 4.11. Two peaks nearest to the origin
along M’—axis are at M’=19 and N’'=29. The beam patterns at these points
are shown in Fig. 4.13 and Fig. 4.14 (The beam pattern for M’'=M=8 is same
as that in Fig. 4.3 since no extrapolation is involved when M'=M). Ve
see that all measurements are not as good as that shown in Fig. 4.4 and
Fig. 4.5 while they are still much better than those in Fig. 4.3. The
case when Hamming windows are applied is shown in Fig. 4.15 and
Fig. 4.16 for M'=13 (where beam SNR gets the largest value) and MX’'=19 (in
contrast with Fig. 4.13). The same ébservztion is made as the case with
the rectangnlar windows. It is also observed for both cases that the

improvement in the beam pattern increases more slowly as M’ increases.
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Ve conclude from these observations that smaller extrapolation filte£
frequency F performs better. This coincides with the criteriom (2)
(Observation (2)) in Sectionm 3.2. Thus it is important to select D and

fc (F-fcél) such ' that Eqn. (3.5), Eqn. (3.19) and the criterion (2) in
[

Section 3.2 are met in designing a digital extrapolation beamformer.

All the experiments shown above were conducted under the assumption
that the parameter v in Eqn. (2.17) is chosen such that 1010;1,% is 13 4B
even if the inpaut SNR ('10108;.22) is not 13 dB. This is because, for
ope reason, the hardware impleno:tation (see Fig. 3.2) requires that y be
fixed. Besides, the input SNR is usually not known in & practical
situation, this also requires a good guess for y. The value for v that
has bdeen used can then be changed. A growp of plots is shown in
Fig. 4.17 through Fig. 4.20 for beam SNR and beam pattern as we did
before, where y is chosen such that 10103;0% is 30 dB. We observe the
similar behavior with the previous ones while some differences are also
noticed. The beam SNR performs worse in the sense that it temds to some
lower value (even 1lower that input SNR) and decreases very fast as M’
departs from 8. On the other band, however, the besm pattern performs
better in the sense that the main lobe width is narrower and the side
lobe - main 1lobe ratio is smaller compared with the previous
corresponding omes., This gives us another degree of freedom in choosing
param;ters to compeasate among various design requirement and various

measurements of performance.
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CRAPTER 5

SUMMARY

In this thesis the application of spatial ext;apolation in digital
beamforming was studied. An essential problem in evaluating performance
of the digital extrapolation beamformer is to model the extrapolstion
error. Section 3.2 was devoted to this issue for bo;h finite enerxgy.
signals and periodic signals. An error model was obtained as a random
function with certain distribution for s particularly important kind of
signals, sinusoidal input signals. Having accomplished this, it is anot

difficult to coastruct a real-time hardware implementation scheme.

A large samount of digital computer simulation was done for various
cases., The results are quite promising. It was shown that the beam
pattern can in general be improved extemsively, in some cases we can even
extrapolate as far as the double length or triple length of the physical
sensors with the performance compatible to & conventional digital
beanformer with this large amount of sensors. On the other hand,
however, signal-to-noise ratio is degraded slightly by the extrapolatiom.

A parameter y can be chosen to compensate between these two measurements.

Other techniques such &s windowing, temporal interpolation, etc. can
be combined with the spatial extrapolation to izmprove perforxmance

further. Examples using Hamming windows were included.

Since the sinunsoidal wave is & basis furction for other signals
through Fourier series and Fourier integral, ard the omne-step

extrapolation process is linmear, the resnlts obtained in this thesis can
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be <zeadily extended to the general case. On the other hand, however,
sinusoidal wave conilin: infinite energy. The convergence of its
discrete extrapolation to its continuous value has not been proven yet
[13]. This, together with a theoretical model for its citznpolatlon

error, remains open questions in the digital extrapolation beamforming.
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